If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16^-2x-1=(1/64)^-3x
We move all terms to the left:
16^-2x-1-((1/64)^-3x)=0
Domain of the equation: 64)^-3x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
-2x-((+1/64)^-3x)-1+16^=0
We add all the numbers together, and all the variables
-2x-((+1/64)^-3x)=0
We multiply all the terms by the denominator
-2x*64)^-3x)-((+1=0
Wy multiply elements
-128x^2+1=0
a = -128; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-128)·1
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*-128}=\frac{0-16\sqrt{2}}{-256} =-\frac{16\sqrt{2}}{-256} =-\frac{\sqrt{2}}{-16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*-128}=\frac{0+16\sqrt{2}}{-256} =\frac{16\sqrt{2}}{-256} =\frac{\sqrt{2}}{-16} $
| 6^8x=36 | | x+30+2/5x+3/6x=360 | | .6+a=8 | | 2+x4=5 | | -2(x-4)+8(x-2)=6x+4-3x | | -2(x+8)=x-6 | | Y=9x-1200 | | (u+9)=7 | | 7x-38=5x-21 | | 2n+12=6 | | 5(x+2)-6=3x+12 | | 4n+9=22 | | (3x-1)=64 | | 207=22-v | | x+(x+48)=100 | | 6n+12=3+3n | | 2x+18+5x+2=90 | | /2k-3(4-k)=3k+4 | | 0.75x+3=6(x-) | | 12(x-2)+3x=13(x+12)=10x | | 175=16-y | | 4.5x16.5=74.25 | | 14(x-2)=2+10/(x-2) | | x+(x-35)=115 | | n^2-18n+52=4 | | 5k=65k=11,12,13,14 | | 36=6(y+2) | | G(-1)=x2-2 | | x(3)+x(2)-6x=0 | | 2m-13=^8m+27 | | 2^-2n=1/8 | | 6x-10x-11=8x=2x+29 |